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The significant rise in the strength and stiffness of porous materials at nanoscale cannot be

described by conventional scaling laws. This letter investigates the effective Young’s modulus of

such materials by taking into account surface effect in a microcellular architecture designed for an

ultralight material whose stiffness is an order of magnitude higher than most porous materials. We

find that by considering the surface effects the predicted stiffness using Euler-Bernoulli beam

theory compares well to experimental data for spongelike nanoporous gold with random micro-

structures. Analytical results show that, of the two factors influencing the effective Young’s modu-

lus, the residual stress is more important than the surface stiffness. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4895582]

Many remarkable features of nanoporous materials are

largely attributed to the high surface area to volume ratio of

their microstructure at nanometer scale. Due to strong inter-

actions of molecules and their clusters on such a large sur-

face,1–3 the dependence of Young’s modulus and yield stress

on the relative density for nanoporous materials cannot be

described by conventional scaling laws,4 which are typically

applicable to porous materials whose cell sizes are larger

than 100 lm. Unfortunately, the structure-property relation-

ships for nanoporous materials remain open questions.5–8

Recent advances in the continuum theory of surface

elasticity9 have opened a new window to studying the size-

dependent phenomena at nanoscale.10–14 A framework of

surface elasticity theory was established to evaluate the elas-

tic behaviour of static bending nanowires, indicating that

they become softer or stiffer under different boundary condi-

tions.12 The combination of Gurtin’s method9 with Euler-

Bernoulli and Timoshenko beam theories provides an

adequate technique to determine the surface effects on the

elastic properties of nanoporous materials.5,15 Up to date, the

fundamental models that have been considered are mainly

restricted to an orthogonal structure consisting of only hori-

zontal and vertical beams as shown in Fig. 1(a). This struc-

ture was conceived for the convenience of deformation

analysis rather than efficient material utilization which is of

considerable significance to the effective properties of low-

density porous materials.16,17 Therefore, we would like to

investigate a microcellular architecture (Fig. 1(b)), which

was designed to increase the effective Young’s modulus

E*.18 Such an elegant architecture constitutes an ultra light-

weight porous material with E*� (q/q0)2 (q and q0 denote

density of porous and bulk/base materials), distinguished

from traditional E*� (q/q0)3 for its stochastic counterparts.

The investigation into the effective Young’s modulus

based on the model proposed in Fig. 1(b) will benefit the

understanding of exceptional performance of nanoporous

materials, which are more commonly composed of inclined

beams. In this letter, we combine the classical solution to

Euler-Bernoulli beam theory with the surface elasticity

theory to quantify E* at nanoscale. The Young-Laplace

equation19 and the surface elasticity model9 are used to eval-

uate the effects of surface tension and surface elasticity. In

addition, the Euler-Bernoulli beam theory,20 which neglects

the longitudinal extension of the nanostrut, is utilized to ana-

lyze the deflection of struts imposed by distributed transverse

load due to the surface effects. The representative element

(unit cell) of the porous material is a diamond-like cell con-

sisting of eight identical struts as shown in Fig. 1(b), where L
and h¼p/3 denote the strut length and the angle with respect

to the horizontal direction, respectively. The strut has a solid

circular cross section with diameter D and the unit cell is

subjected to stress r vertically.

The interactions of superficial resident constraints with

the interior atoms lead to surface tension and a stress jump

across the interface, which is termed as surface effects gener-

ally existing in nanostructures.21 Such effects can be simpli-

fied by surface stress caused by transverse load on the edge

of nanostruts along normal direction in terms of the general-

ized Young-Laplace equation and Gurtin’s theory of surface

elasticity,21–23 given as

FIG. 1. (a) The classical orthogonal cell model. (b) A schematic of the octa-

hedral cell composed of inclined struts.a)Electronic mail: shiwei.zhou@rmit.edu.au
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rs
ab ¼ cdab þ @c=@es

ab; (1)

where dab is the Kronecker delta and c is the surface energy.

The surface strain tensor es
ab is assumed to be the tangential

strain tensor. According to Eq. (1) and under the assumption

that the surface of the nanostrut is homogeneous, isotropic,

and linearly elastic,24 the overall surface stress s along the

longitudinal direction of strut is

s ¼ s0 þ Eses; (2)

where s0 is the residual surface stress at the strain-free state

and es is the longitudinal surface strain. The stiffness of the

surface layer is denoted as Es. According to Young-Laplace

equation, the stress jump �rij across the interface depends

on the surface curvature jab and surface stress sab,19,24,25

given as

�rijninj ¼ sabjab; (3)

where ni and nj denote the unit normal vectors.

Based on Eqs. (2) and (3), the surface effects with con-

sideration of residual surface stress are converted into dis-

tributed load along the transverse direction of the beam as

shown in Fig. 2, given as

pðxÞ ¼ Hj: (4)

From Euler-Bernoulli beam theory, the mean curvature

j ¼ v00 is the second derivative of the small deflection v and

variable H is integrated along the edge of cross section as

H ¼ 2

ðp=2

�p=2

ðD=2Þs cos h dh ¼ 2sD: (5)

The equilibrium equation for the bending strut under the dis-

tributed force p(x) is

ðEIÞ�v0000 ¼ pðxÞ: (6)

When t� D, the flexural stiffness, according to the compos-

ite beam theory,20 is

EIð Þ� ¼ EI þ E1

ð2p

0

D=2ð Þcos hð Þ2 D=2ð Þt dh

¼ EI þ p
8

EsD
3; (7)

where I¼pD4/64 is the second moment of inertia of circular

cross section. In our model, the elastic modulus E1¼Es/t of

the surface layer with a thickness of t is governed by the sur-

face elasticity model while the inner bulk volume obeys

the conventional continuum mechanics theory.26–28 Under

small deformation the surface strain can be approximated as

es � �(D/2)v00. Substituting Eqs. (2) and (5) into Eq. (6)

leads to

ðEIÞ�v0000 ¼ pðxÞ ¼ Hj � 2Dðs0 � EsðD=2Þv00Þv00: (8)

After neglecting the higher order term ðv00Þ2, Eq. (8) is sim-

plified as

ðEIÞ�v0000 � 2Ds0v
00 ¼ H0v00: (9)

Figure 2 schematically shows the free-body diagram for

a typical inclined strut and its deflection v. As discussed

above, distributed load p(x) is imposed on the normal direc-

tion and its magnitude depends on the mean curvature. Force

F and moment M induced by stress r are applied at both

ends. The cross section of the beam having thickness t of the

layer with surface effects is illustrated in the inset of Fig. 2.

Based on equilibrium equations, these forces can be simply

obtained as

C ¼ 0; (10)

P ¼ ð
ffiffiffi
2
p

L cos hþ DÞ2r=4; (11)

M ¼ L cos hð
ffiffiffi
2
p

L cos hþ DÞ2r=8; (12)

F ¼ cos hð
ffiffiffi
2
p

L cos hþ DÞ2r=4: (13)

The deflection and slope at the fixed left end are

vð0Þ ¼ v0ð0Þ ¼ 0: (14)

Due to the symmetry of the geometry and loads, the curva-

ture at the middle of the beam with x¼L/2 is

v00ðL=2Þ ¼ 0: (15)

By integrating the transverse load p(x) in Eq. (9) from

x¼ a to x¼L (a � (0, L)), we obtain the force equilibrium

as

�ðEIÞ�v000ðaÞ ¼ Pþ
ðL

a
H0v00 dx ¼ Fþ H0ðv0ðLÞ � v0ðaÞÞ:

(16)

With the consideration of boundary conditions (Eqs. (14)–(16))

in Eq. (6), the deflection is determined as

v xð Þ ¼ F 3L� 2xð Þx2

12 EIð Þ�
; s0 ¼ 0; (17)

v xð Þ ¼
F e L�xð Þg � exg þ eLg xg� 1ð Þ þ xgþ 1

� �

H0 eLg þ 1ð Þg
; s0 6¼ 0;

(18)

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0=ðEIÞ�

p
is a symbol to simplify the formula.

It is noted that Eq. (17) becomes the classical Euler-

Bernoulli beam theory when Es¼ 0 and Eq. (18) is equal to

Eq. (17) when s0¼ 0.

FIG. 2. The free-body diagram and its deflection for a typical inclined strut

under compression stress r and the distributed load p(x) caused by surface

effects.
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The component v cos h of deflection in the direction of r
divided by the vertical projection L sin h of length L gives

e ¼ vðLÞ cos h=ðL sin hÞ: (19)

Thus, the effective Young’s modulus E*¼ r/e is obtained as

E� ¼ 48 EIð Þ� sin hffiffiffi
2
p

L cos hþ D
� �

L cos h
� �2

; s0 ¼ 0; (20)

E� ¼ 4H0L sin hffiffiffi
2
p

L cos hþD
� �

cos h
� �2

2
g tanh � Lg

2

� �
þ L

� � ; s0 6¼ 0

(21)

The ratio of D to L can be related to the relative density

as D=L ¼ c
ffiffiffiffiffiffiffiffiffiffi
q=q0

p
, where c � 1 is a topology-dependent

factor for most porous materials with open cells.32 For the

cell shown in Fig. 1(b), we calculate c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos2h sin h=p

p
.

Without loss of generality, the relative density is assumed to

be q/q0¼ 31% in the following discussions,2 a representative

value for porous material. Nanoporous gold (np-Au) is used

to embody the effective Young’s modulus in Eqs. (20) and

(21) as it has been fabricated by dealloying method2 with the

ligament size ranging from a few nanometers to 1 lm.

Moreover the size-dependent behaviours of np-Au with rela-

tive densities from 20% to 42% has been tested,29 which can

be used as a reliable criterion to evaluate the analysis results.

This letter mainly focuses on the stiffness so other superior

physical properties and unique functions of np-Au are not

considered. For the single-crystalline gold, E0¼ 70 GPa,

s0¼ 1.40 N/m, and Es¼ 3.63 N/m on the (001) crystal sur-

face are calculated from ideal atomic simulation.33 However,

small ligament size leads to a dramatic increase in residual

stress,31 In addition, some post-fabrication processes such as

annealing also result in higher residual stress. Therefore, it is

plausible to let s0¼ 80 N/m in Eq. (21).

Figure 3 depicts the dependence of E* on D. It clearly

shows that the effective values (the red curve with square

markers) well match the experimental data (five black stars

in Fig. 3) for np-Au with similar (001) crystal surface proper-

ties.29 The blue curve with triangle markers in Fig. 3 is for

the classical Gibson and Ashby’s cell with similar parame-

ters except for c¼ 1. It shows the effective values5 are much

lower than the experimental data for small ligament size.

According to our model and experimental data, the surface

effect becomes discernible when the ligament size is smaller

than 20 nm while Gibson and Ashby’s model does not show

this effect until the ligament size is less than 3 nm. The green

curve with circle markers in Fig. 3 is for c¼ 2/3, an exact

calculation for Gibson and Ashby’s cell, but it deviates from

the experimental results further. The black square30 and

black circle markers31 stand for the experimental data for

np-Au from other references, which are within an acceptable

error margin in comparison with our analytical results.

Because the residual stress is significantly influenced by

the fabrication techniques and the surface stiffness varies

with different crystal surfaces, the effects of s0 and Es on E*

are presented in Figs. 4 and 5, respectively. Both figures

illustrate that the increase of each factor leads to higher E*,

in particular, when the strut size is less than 10 nm.

However, it seems that s0 plays a more significant role in

affecting E* than Es when the ligament size D> 3 nm. It is

noted in Fig. 4 that the critical point of surface effects

changes from 1 nm to 10 nm for the ligament size when s0

increases from 0 to 50 N/m. The role of s0 on intensifying

the surface effects becomes weaker for larger residual stress

as shown in the blue curve with triangle markers for

s0¼ 100, which is only marginally higher than the green

curve with circular markers for s0¼ 50 N/m in Fig. 4.

Compared with the residual stress, the surface stiffness is

FIG. 3. The comparison of E* in terms of octahedral unit cell as well as

Gibson and Ashby’s model5 with experimental data (Es¼ 3.63 N/m,

s0¼ 80 N/m, q/q0¼ 31%).29–31

FIG. 4. Effect of residual surface stress on E* with Es¼ 3.63 N/m and

q/q0¼ 31%.

FIG. 5. Effect of surface stiffness on E* with s0¼ 1.4 N/m and s0¼ 90 N/m
for q/q0¼ 31%.
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less important because the doubling of Es from 50 N/m to

100 N/m slightly changes E* in Fig. 5. If s0¼ 1.4 N/m, the

role of Es is negligible unless D< 1 nm. Thus, it is more rea-

sonable to attribute the rise of Es in Fig. 5 to higher value of

s0¼ 90 N/m than to Es¼ 50 N/m or Es¼ 100 N/m.

In conclusion, this work has studied the surface effects

on the effective Young’s modulus for a model with inclined

struts, which is more akin to the microstructure of nanopo-

rous materials. Gurtin’s theory and Young-Laplace equation

are used in combination with Euler-Bernoulli beam theory to

obtain an explicit definition to the effective Young’s modu-

lus of nanoporous gold. Analytical solution clearly demon-

strates the experimentally observed surge of Young’s

modulus at nanoscale for nanoporous gold.29 It also reveals

that the residual surface tension plays a more important role

than the stiffness of surface layer. Our study affirms that the

architecture of microstructure could significantly impact on

the overall behaviour of nanoporous materials, and it is pos-

sible to optimize the base cell by using structural topology

optimization techniques in order to improving the effective

Young’s modulus.

The work was funded by Australian Research Council

(DE120102906 and DP110104698).
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